shkolaput.ru 1 2


На правах рукописи


Исаенков Александр Юрьевич


совершенствование методов прогноза гидродинамического и термического режимов водоемов-охладителей


Специальность 05.23.16 – Гидравлика и инженерная гидрология


АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата технических наук


Москва, 2010

Работа выполнена в лаборатории динамики русловых потоков и ледотермики

Института водных проблем РАН (ГУ ИВП РАН)


Научный руководитель:




доктор технических наук,

ведущий научный сотрудник

Елена Ивановна Дебольская







Официальные оппоненты:




доктор технических наук

ГУ «ГГИ», лаборатория речных наводнений

Бузин Владимир Александрович







кандидат технических наук,

ФГОУ ВПО МГУП, кафедра вычислительной техники и прикладной математики

Верхоглядов Андрей Александрович







Ведущая организация:




ГНУ ВНИИГиМ Россельхозакадемии






Защита состоится «18» октября 2010 г. в 16 ч. 30 мин. на заседании Диссертационного совета Д 220.045.02 во ФГОУ ВПО Московском государственном университете природообустройства (МГУП) по адресу: 127550, Москва, ул. Прянишникова, д. 19, аудитория 201. Факс: +7 (495) 976-10-46 (в Диссертационный совет Д 220.045.02 для Евдокимовой И.М.).


С диссертацией можно ознакомиться в библиотеке ФГОУ ВПО Московского государственного университета природообустройства (МГУП) по адресу: 127550, Москва, ул. Прянишникова, д. 19.


Автореферат разослан «____» ____________ 201__ г.


Ученый секретарь

Диссертационного совета,

кандидат технических наук,

доцент И.М. Евдокимова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ


Актуальность исследования

Среди глобальных проблем в настоящее время дефицит пресной воды постепенно выходит на одно из первых мест. В связи с непреходящей актуальностью проблемы водопользования исследования внутренних водоемов на протяжении всей истории гидрологии и океанологии играли одну из ведущих ролей. Особое значение такие исследования приобрели в связи с возросшим антропогенным воздействием на экосистемы водоемов. Деградация пресных водоемов под влиянием антропогенных факторов приводит либо к их исчезновению, либо к резкому ухудшению качества вод. В связи с этим проблема оздоровления и восстановления водоемов становится чрезвычайно важной.

Развитие численных методов позволило добиться существенных достижений как в теоретическом, так и в практическом направлениях этих исследований. Интенсивное развитие математического моделирования в области океанологии и гидрологии, происходящее в последнее время, предоставляет все новые возможности для исследования природных процессов, влияющих на состояние внутренних водоемов, антропогенного воздействия на них и оценки возможности их использования. В то же время при всем многообразии существующих моделей встает проблема выбора наиболее подходящей из них для адекватного отражения процессов, происходящих в конкретном природном объекте, всех значимых параметров и действующих сил, формирующих его гидро- и термодинамическую структуру. Вышеизложенными обстоятельствами и определяется актуальность данной работы.


В связи с этим основной целью работы была адаптация небольшого количества, а по возможности одной модели, с помощью которой можно будет исследовать гидродинамический и термический режимы внутренних водоемов (озер, водохранилищ и водоемов-охладителей).

Одной из главных задач исследования представляется обоснование критериев выбора размерности модели в зависимости от морфометрических параметров водоема и масштабов внешних воздействий, формирующих происходящие в нем процессы. Как показывает анализ применения существующих моделей, большая часть исследователей использует для моделирования внутренних водоемов двухмерное приближение, исключая рассмотрение их вертикальной структуры. Между тем, измерения, проведенные на ряде водоемов, позволяют сделать заключение, что вертикальная структура гидродинамических и особенно термических параметров не является равномерной и может вносить существенные отклонения в результаты расчетов, проведенных с использованием двухмерных моделей.

Цель работы

Цель настоящего исследования – модификация и адаптация глобальной математической модели для расчетов характеристик гидродинамического и термического режимов водоемов-охладителей при изменяющихся внешних воздействиях и батиметрии.

Задачи исследования

Для достижения поставленной цели потребовалось решение ряда задач:


  • выполнение сравнительного анализа существующих методов, основанных на экспериментально полученных данных, и численных методов моделирования гидродинамического и термического режимов водоемов-охладителей;

  • проведение натурных исследований на водоемах-охладителях (в том числе обследование территорий, измерение морфометрических и гидрологических характеристик), обработка и анализ данных натурных исследований;

  • адаптация трехмерной математической модели для условий конкретного водоема-охладителя;
  • верификация модели по данным натурных измерений;


  • проведение модельных расчетов;

  • разработка практических рекомендаций по оптимальной эксплуатации гидротехнических сооружений тепловых станций, повышению эффективности их работы, минимизации последствий теплового загрязнения вод.

Научная новизна

  • Адаптация глобальной трехмерной модели для исследования особенностей гидродинамического и термического режимов водоемов-охладителей, связанных с неравномерностью вертикального распределения их параметров.

  • Впервые для расчета характеристик гидродинамического и термического режимов водоемов-охладителей при изменяющихся внешних воздействиях и батиметрии применена глобальная трехмерная математическая модель; показана перспективность ее использования.

  • Результаты, полученные с помощью трехмерной модели, позволили достоверно оценить риски нарушения экологического равновесия исследуемых водоемов вследствие их перегрева при изменчивом внешнем воздействии.

  • Результаты математического моделирования с использованием трехмерной модели опровергли результаты моделирования с применением двухмерной модели и подтвердили существование вертикальной неоднородности распределения температур воды и скоростей течений, а также показали ее значительное влияние на общий температурный режим водоемов-охладителей.

  • Получены новые данные натурных исследований гидродинамического и термического режимов мелководных водоемов-охладителей.

  • Выявлены новые закономерности гидродинамического режима водоемов-охладителей.

Практическая значимость работы

Практическая значимость исследования определяется возможностью применения полученных результатов для оценки рисков возникновения теплового загрязнения вод и нарушения экологического равновесия в водоемах-охладителях. Даны рекомендации эксплуатирующим организациям по наиболее оптимальному использованию охлаждающей способности водоемов-охладителей Шатурской ГРЭС, сохранению их экологической стабильности; оценке целесообразности строительства новых струенаправляющих сооружений и проведения дноуглубительных работ с вводом нового энергоагрегата ПГУ-400 при обеспечении режима эксплуатации водоемов-охладителей в соответствии с нормативными требованиями по охране поверхностных вод.


Достоверность полученных результатов

Достоверность результатов исследования подтверждается результатами натурных и экспериментальных исследований с использованием существующих опробованных методов измерений, в том числе современных высокоточных цифровых средств навигации, измерения, а также обработки информации; использованием известных физических предпосылок положенных в основу модели; положительными результатами сравнения натурных и экспериментальных исследований.

Апробация работы

Результаты, полученные в рамках диссертационной работы, докладывались и обсуждались на заседаниях семинаров и Ученого Совета ИВП РАН, на VII конференции «Динамика и термика рек, водохранилищ и прибрежной зоны морей».


Публикации

Результаты, полученные в диссертации, опубликованы в пяти печатных работах, в том числе четыре в изданиях, включенных в Перечень ВАК.

Структура и объем диссертации

Работа состоит из введения, пяти глав, заключения, списка использованной литературы, включающего 92 наименования. Полный объем диссертации составляет 127 страниц, включая 30 иллюстраций и 21 таблицу.


ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ


Во введении описывается актуальность работы, цели и задачи исследования, научная новизна и практическая значимость работы и основные аспекты ее содержания.

В первой главе работы изложены процессы, происходящие в открытых водоемах и в водоемах под поверхностью льда, условия и стадии формирования льда, а также характеристика и классификации водоемов-охладителей, особенности их термического режима и термическая структура.

В разделе 1.1 работы излагаются процессы, происходящие во внутренних водоемах с открытой поверхностью и водоемах, покрытых льдом. Рассматривается динамика течений, перенос тепла, термические колебания, а также процесс замерзания внутренних водоемов.


Приводится обзор классификаций течений, характерных для водоемов суши. Отдельное внимание уделяется классификации течений по причине их возникновения. Рассматривается определение скоростей водного потока. Указывается необходимость знания ха­рактера течений и условий их формирования при проектировании и эксплуатации гидротехнических сооружений.

Изложена сущность и механизм переноса тепла в водоемах в летний период. Рассмотрены условия пространственной направленности переноса.

Особое внимание уделяется температурному режиму в летний период с учетом особенностей его формирования в зависимости от размеров (мелкие и глубокие) и проточности (проточные и малопроточные). При рассмотрении динамики температурного режима период года, сво­бодный ото льда, разбивается на отдельные промежутки времени, которые отли­чаются процессами теплопереноса в водной толще. Отмечается связь теплопереноса в вод­ной среде с удельным расходом, оказывающим существенное влияние на температурный режим водоемов.

На основании проведенного анализа выделяются характерные отличительные особенности температурного режима неглубоких и глубоких малопроточных и проточных водоемов в период с открытой водной поверхностью.

Приводится обзор условий и стадий формирования льда. Излагается общая характеристика процессов охлаждения и замерзания водоемов, особенности их замерзания и образования внутриводного льда. Отмечаются основные факторы процесса ледооб­разования: теплообмен и перемешивание масс воды. Выделены типы замерзания водохранилищ в зависимости от ин­тенсивности теплообмена при ледообразовании в поверхностном слое воды.

В разделе изложены условия, необходимые для развития ледообразования, механизм охлаждения водоемов и их отдельных участков в зависимости от размеров, проточности и других условий, образования разнообразных ледовых форм и замерзания водоемов, завершаемого ледоставом. Отдельное внимание уделено образованию внутриводного льда. Рассмотрены условия и процессы его формирования, формы и гидравлическая крупность кристаллов внутриводного льда, оценка воздействия при эксплуатации гидротехнических сооружений.


Изложены процессы, происходящие в водоемах под ледяным покровом. Рассматривается динамика течений, перенос тепла, термические колебания. Отмечаются особенности течений в водоемах в зимний период при наличии ледяного покрова и ледяных образований в толще потока, указывается характер течений, закономерности их формирования и изменения в условиях, когда уменьшается разнообразие факторов, вызывающих образование различных течений. Среди таких факторов можно выделить метеорологические факторы, факторы, вызывающие образование гравитационных течений, наличие подпирающей поверхности. При этом отмечается возможность образования напорного движения водного потока под поверхностью льда.

Рассматриваются течения, оказывающие наибольшее влияние на термический режим водохранилищ, анализируется перенос тепла в зимний период. Особое внимание уделяется условиям формирования и значению плотностных течений, причинам образования и роли конвекционного переноса в водохранилищах различных типов. В условиях, когда турбулентный теплоперенос соизмерим с пе­реносом тепла плотностными течениями, необхо­димо оценивать суммарный коэффициент теплообмена:

, (1)

где kτ – коэффициент турбулентного теплопереноса; kК – коэффициент теплопереноса, возникающего от возмущений, не связанных с продольной скоростью течения исследуемого водотока; kф – коэффициент физической теплопровод­ности воды.

Указывается зависимость ледового термического режима водоема от ряда факторов, условия снижения или исключения влияния некоторых из них. При анализе термического режима водоемов под ледяным покровом подчеркивается, что с момента установления ледостава термический режим водоема определяется запасом тепла в воде и ложе к на­чалу ледостава и теплопроводимостью водной среды. Показано, что теплозапас и теплообмен в водохранилищах зависят от их проточности и глубины, интенсивности перемешивания воды. Отмечается роль зимнего нагревания в тепловом балансе водохранилища и его влияние на образование льда на поверхности воды. Теплообмен с ложем подо льдом в сочетании с морфометрическими и гидрологическими условиями определяют неравно­мерность распределения температуры не только по глубине, но и по площади крупных водохранилищ. Рассматриваются колебания температуры в водоемах в период, предшествующий их вскрытию, а также условия вскрытия водоемов, распространение весенней конвекции и весенние ледовые явления.


В разделе 1.2 рассматриваются водоемы-охладители. Указываются их характеристики, особенности их термического режима, приводится классификация.

Приводится характеристика показателей эффективности схем использования водоема-охладителя. Для оценки температуры охлажденной циркуляционной воды на основе решения уравнения теплового баланса рекомендуется применять один из двух показателей – параметр распределения температуры ПT, используемый при существенных изменениях условий теплообмена водоема-охладителя с атмосферой и отражающий снижение температуры охлажденной циркуляционной воды относительно среднего температурного уровня в водоеме-охладителе, или коэффициент использования Kисп, который вводится исходя из сопоставления рассматриваемого реального водоема-охладителя и эквивалентного ему по охлаждающей способности условного прямоугольного водоема с плоскопараллельным течением. Рассматриваются различные классификации, применимые к водоемам-охладителям.

При появлении внешнего теплового воздействия, источником которого являются атомные, тепловые электростанции, водоемы начинают выступать в качестве водоемов-охладителей. При этом происходит существенное изменение режима водоемов. Для водоемов-охладителей требуется применение иных методов расчетов термического режима по сравнению с водоемами, в которые не производится сброс подогретых вод.

Гидротермику водоема-охладителя определяют тепло- и массообмен от водной поверхности в атмосферу и процессы переноса тепла непосредственно в самой водной массе водоема. Между этими процессами существует обратная связь, так как температура на поверхности определяет интенсивность охлаждения, которая в свою очередь влияет на температурное поле в водохранилище, условия стратификации, развитие плотностных течений и турбулентный обмен.

Схема циркуляции в водоеме-охладителе определяется его формой, взаимным расположением водосбросных и водоприемных сооружений, а также струераспределительными и струенаправляющими сооружениями.


Наиболее выгодной термической структурой водоема-охладителя является двухслойная вертикальная температурная стратификация. Степень вертикальной температурной стратификации оценивается параметром стратификации

(2)

где h1 – толщина верхнего слоя при штиле; L, В, Н – длина, ширина и средняя глубина водоема-охладителя соответственно; f – коэффициент трения на поверхности раздела слоев; Q циркуляционный расход; η – коэффициент разбавления на водовыпуске; b – коэффициент температурного расширения воды; ΔТ – температурный перепад водоема-охладителя, принимаемый равным температурному перепаду на конденсаторах турбин; gускорение свободного падения.

На неглубоких водоемах-охладителях сброс подогретых вод с тепловых или атомных электростанций вносит искажение в нормальное распределение температур воды и скоростей течения. Подогретые воды летом растекаются по поверхности водоема, образуя в его верхних слоях термоклин мощностью в 3-5 м с наибольшей температурой вблизи поверх­ности воды. Вглубь водоема температура воды уменьшается с градиентом 1,5-2,0°С/м. К границам распространения подогретых вод по площади водохранилища температурные градиенты убывают до нормаль­ных. Влияние теплых вод сказывается в зависимости от размеров сброса на более или менее значительном расстоянии.

Во второй главе анализируются методы гидротермических расчетов водохранилищ и водоемов-охладителей, основанные на экспериментально полученных данных, а также методы численного моделирования термического режима. Рассматриваются одно-, двух- и трехмерные модели, их особенности, преимущества и недостатки. Оцениваются разработки различных научных организаций, как прежние, так и современные.

В разделе 2.1 анализируются методы гидротермических расчетов водохранилищ и водоемов-охладителей, основанные на экспериментально полученных данных. Анализируются допущения, используемые в этих методах.


Рассмотрен метод суперпозиции, предложенный А.И. Пеховичем для решения гидротермических задач при сложной картине распределения температуры воды в водоеме. Метод охватывает многообразные условия, и применим для расчетов водохранилищ различных типов, условий наполнения, видов перемешивания, условий водной поверхности.

Анализируется метод теплового баланса, применяемый при рассмотрении термического режима водохранилищ и нашедший широкое применение для разработки приемов прогнозов сроков замерзания озер, водохранилищ.

В разделе рассматриваются методы расчета водоемов-охладителей, в основе которых лежит метод теплового баланса. Анализируется глубокая методика гидротермического расчета водоемов-охладителей, водозаборных и водовыпускных сооружений, предложенная ВНИИГ им. Б.Е. Веденеева. Рассматриваются задачи, для решения которых осуществляется расчет температурного режима водоемов-охладителей (определение температуры охлажденной циркуляционной воды, необходимой площади водоема-охладителя, предельной мощности ГРЭС). Обозначаются необходимые условия для проведения расчетов, требуемые исходные данные. Рассматривается необходимость учета ряда факторов при расчете температуры водоема-охладителя по уравнению теплового баланса, включения ряда составляющих в уравнение теплового баланса при существенном изменении объема воды в водоеме-охладителе и соответствующем изменении теплосодержания.

В разделе 2.2 проводится анализ методов численного моделирования при расчете водоемов-охладителей и особенностей их применения. Рассматриваются работы ряда научных организаций, занятых исследуемой проблемой (Институт вычислительного моделирования СО РАН, Институт гидродинамики СО РАН, ИВП РАН, НИИЭС, ВНИИГ им. Б.Е. Веденеева, ИФТПЭ АН Литвы).

Рассматривается применение одномерной модели, построенной на использовании уравнения энергии для описания температурного поля водоемов-охладителей и применяемый, главным образом, при правильной морфометрии и некоторых упрощениях структуры потока. К недостаткам модели следует отнести существенные расхождения при сопоставлении натурных и расчетных данных вследствие принятых допущений. Уделяется внимание моделям с применением коэффициента дисперсии для описания процессов массообмена, нашедшим широкое применение и использовавшимся для описания теплообменных процессов в водоемах-охладителях.


Особенное внимание уделяется численному моделированию с использованием уравнений движения. Отмечается использование многочисленных допущений не только при двумерном, но и трехмерном моделировании. В двумерных моделях опускаются важные составляющие динамики и переноса тепла, некоторые трехмерные модели не рассматривают всесторонне процессы, происходящие в водоемах-охладителях, и затрагивают лишь отдельные процессы и параметры.

Рассматривается метод численного моделирования гидротермических режимов водоемов-охладителей, основанный на приближенном решении общих уравнений движения, неразрывности и энергии, позволивший оценить ряд факторов, учет которых упрощенными методами был невозможен.

Рассматривается область применения упрощенных уравнений гидротермического режима. Возможность упрощения системы, основанной на общих уравнениях движения, неразрывности и энергии, в основном определяется структурой потоков в водоеме-охладителе. Определяющим фактором структуры следует считать условия плотностной стратификации. Оцениваются условия сведения трехмерной задачи к двумерной плановой.

Указываются примеры успешного моделирования гидротермических режимов водоемов-охладителей. При этом выделяется трехмерная нестационарная модель течений и переноса тепла, разработанная Институтом гидродинамики СО АН СССР и примененная к ряду объектов. Отмечаются возможности и достоинства модели, ее достаточная универсальность, использование эффективных численных методов при разработке вычислительных алгоритмов данной модели.

В разделе 2.3 проводится обзор глобальных математических моделей, тенденция к разработке которых сложилась в последние годы за рубежом. Разработкой таких моделей занимаются крупные научные коллективы; модели широко распространены и апробированы на многих природных объектах. Приводится обоснование необходимости применения трехмерной модели для решения поставленных в работе задач. Требованием к такой модели является возможность работы с мелководными объектами и выделения вертикальной структуры водоема. Отмечается модель GETM (www.getm.eu), как наиболее перспективная модель с точки зрения поставленных задач. Подчеркивается наличие у нее широких возможностей для расчетов и ряд других преимуществ.


В третьей главе представлено описание натурных исследований на водоемах-охладителях Шатурской ГРЭС. Дано описание объектов исследований, приводится методика проведения и основные результаты исследований.

В разделе 3.1 приводится обзор объектов исследования – Шатурской ГРЭС и водоемов-охладителей электростанции. Рассматриваются физико-географическое положение, климатические особенности района исследований, геологические, геоморфологические, гидрогеологические особенности, гидрологические характеристики водоемов-охладителей Шатурской ГРЭС (рис. 1). Указывается характеристика каждого из озер (Святого, Муромского, Белого, Черного) и системы охлаждения в целом. Приводится историческая справка и технические характеристики электростанции.





Рис. 1. Система водоемов-охладителей Шатурской ГРЭС.

В разделе 3.2 представлены характеристики измерительной аппаратуры (навигационной, гидрометрической, метеорологической) и методика проведения исследований.

В разделе 3.3 приводятся результаты натурных исследований на водоемах-охладителях Шатурской ГРЭС.

В процессе полевых работ проведено рекогносцировочное обследование территории, примыкающей к водоемам-охладителям Шатурской ГРЭС, наблюдение за метеорологическими характеристиками. В результате рекогносцировочного обследования выявлено состояние прибрежной территории, характер зарастания водоемов, местоположение зон зарастания, видовой состав водной и прибрежной растительности, наличие и характер источников загрязнения в водоохранной зоне и др.

Определены морфометрические характеристики озер (размеры, конфигурация, площади зеркала); произведена батиметрическая съемка, в результате которой установлен характер распределения глубин в озерах, особенности донного рельефа, осложняющие циркуляцию вод в озерах, рассчитаны объемы озер при разных отметках уровня воды. Данные измерения позволили оценить Шатурские озера как мелководные.


Проведен анализ поверхностной циркуляции, определены температуры воды, скорости потока и расходы воды в характерных местах, а также произведен сбор всей доступной информации об изменении различных характеристик озер за обозримый период. Определены гидрологические характеристики в местах сужения потока в плане, при этом на данных участках измерена наибольшая скорость течений. Проведены измерения уровней воды. Определены основные параметры циркуляции воды в группе Шатурских озер, расходы воды на водовыпусках.

В ходе работ определены основные параметры циркуляции воды в водоемах-охладителях. Было выявлено, что не происходит формирования единой струи, связывающей систему озер. Измерения скоростей показали, что скорости потока после рассеивания струйного течения в местах сужений резко снижаются, а их направление становится нестабильным, и движение вод далее определяется рельефом дна водоема и воздействием ветра, влияние которого на поверхностную циркуляцию озер оказывается существенным.

Рассчитанные параметры водообмена позволяют предположить, что воды озер не могут иметь существенных отличий по своему составу, что полностью подтверждают результаты гидрохимического анализа. Выявлено, что по термическому режиму Шатурские озера близки к природным.

Определена зависимость температурный режима озер от метеорологических условий и теплового потока, создаваемого выпусками воды ГРЭС. Замечено, что характерной особенностью термического режима озер является частое превышение температуры воды над температурой воздуха. Установлено участие в процессе охлаждения практически всей толщи воды. Тепловой баланс зависит от толщины прогретого слоя, который в результате конвекции постепенно вовлекается в процесс испарения. Определена роль каждого из озер в процессе охлаждения. Воды озер признаны типично регионально-фоновыми, формирующимися в условиях заболоченного водосбора и имеющими удовлетворительные характеристики.

Четвертая глава посвящена рассмотрению трехмерной модели, применяемой в настоящей работе для расчета изучаемых водоемов-охладителей. Приведена краткая история и перспективы развития модели, общая характеристика модулей, основные уравнения. Описывается усовершенствование и адаптация модели в рамках диссертации.


Приводятся уравнения гидродинамики и переноса и граничные условия. Отмечена универсальность, назначение и варианты возможного применения. Выделяется, что модель адаптирована для водоемов-охладителей. Отмечается, что проведенные расчеты основаны на фактических данных.

Приведена батиметрия водоемов-охладителей Шатурской ГРЭС (рис. 2), горизонтальное и вертикальное разрешение модели.


Рис. 2. Батиметрия водоемов-охладителей Шатурской ГРЭС.


Проводится сравнение данных наблюдений и результатов численного моделирования. Указывается, что сравнение рассчитанных и измеренных параметров продемонстрировало их хорошее соответствие и существование неоднородной вертикальной термической структуры. В подтверждение выводов приводятся различные схемы и графики.

В пятой главе изложены результаты применения модифицированной для водоемов-охладителей модели GETM и даны рекомендации по объектам исследования.

Отмечается предстоящее в связи с планируемым вводом в эксплуатацию на Шатурской ГРЭС новой парогазовой установки (ПГУ-400) увеличение расхода поступающей нагретой воды, сокращение времени достижения водозабора тепловым потоком, повышение температуры воды в водоемах-охладителях и на водозаборе и возможные негативные последствия для работы станции и экологического состояния водоемов-охладителей.

Для предотвращения негативных последствий от увеличения мощности ГРЭС было предложено продлить струенаправляющую дамбу в оз. Святом. Отмечаются недостатки двумерного моделирования термодинамических процессов по предложенному варианту. Подчеркиваются результаты, полученные автором в ходе трехмерного моделирования. Натурные наблюдения и численные эксперименты по трехмерной модели показали не только существование неоднородности в вертикальных распределениях скоростей течений и температуры, но и значительное ее влияние на общий температурный режим.

Приводятся результаты моделирования различных сценариев расположения струенаправляющих дамб (рис. 3) и выемок при различных метеорологических условиях (ветре, влажности, облачности) и параметрах водовыпуска, в том числе для нормальных условий и экстремальных с учетом дополнительных расходов от введения в эксплуатацию новой парогазовой установки.


Построено распределение поверхностных температур воды при различных сценариях расположения струенаправляющих дамб и выемок в различные моменты времени (через 2, 5 и 10 дней) после начала водовыпуска с расходом Q = 54 м3/с и температурой TQ = 33°C и экстремальных метеоусловиях: начальная температура воды в озерах Tводы = 25°C, температура воздуха независимо от времени суток Tвозд = 25°C, скорость ветра V = 0 м/с. Анализ данных моделирования позволяет сделать заключение, что во всех случаях температуры на водозаборе различаются незначительно. В то же время различие температур в оз. Святом существенно, и самые низкие значения соответствуют сценарию при наличии выемок в оз. Святом. Отмечается, что этот же сценарий наиболее эффективен с точки зрения нагревания воды на водозаборе.








Рис. 3. Батиметрия Шатурских водоемов-охладителей с различным расположением струенаправляющих дамб и наличием выемки: а – современное состояние; б – с удлиненной дамбой в оз. Святом и прорезью в существующей поперечной дамбе; в – с удлиненной дамбой в оз. Святом без поперечной дамбы; г – с существующим расположением дамб и наличием выемки в оз. Святом.

Построено распределение осредненных по глубине температур воды в более экстремальных условиях через 10 дней после начала водовыпуска с расходом 60 м3/с и температурой 30°C, начальная температура воды в озерах Tводы = 22°C, температура воздуха независимо от времени суток Tвозд = 35°C, скорость ветра V = 0 м/с. Анализ графических результатов моделирования позволяет сделать вывод, что удлинение продольной дамбы будет иметь неблагоприятное воздействие на температурный режим в оз. Черном и особенно на нагревание оз. Святого. Установлено, что самым благоприятным сценарием в этих условиях является сценарий при отсутствии дамб.


Результаты расчетов для нормальных метеоусловий (температура воздуха 22°C) при современных нагрузках на ГРЭС (расход 20 м3/с) позволили установить, что при нормальных условиях удлинение продольной дамбы приводит к незначительному снижению температуры воды на водозаборе в оз. Черном, но при этом нагревание воды в оз. Святом происходит гораздо быстрее, и распределение температуры по вертикали становится более однородным.

По результатам наблюдений на оз. Святом построено распределение по времени и глубине температур в геометрическом центре озера и в среднем по озеру для случаев с существующей и удлиненной дамбой (рис. 4 и 5). Из рисунков видно, что удлинение дамбы приводит к ускорению установления гомотермии с более высокими температурами.

Отмечается существенная роль ветрового воздействия и влажности воздуха в тепловом режиме Шатурских водоемов-охладителей. Наиболее неблагоприятным для работы ГРЭС является ветер северного направления. При моделировании рассчитаны варианты с разными направлениями и скоростями ветра, разной температурой точки росы и облачности для учета испарения. Анализ численных экспериментов показал, что учет этих параметров дает результаты, соответствующие наблюдениям. Установлено, что наибольшее влияние имеют ветровое воздействие и влажность, меньшее влияние оказывает облачность.




Рис. 4. Распределение температур: а – в вертикальном столбе в центре оз. Святого; б – в среднем по оз. Святому в случае существующей дамбы (с учетом суточного хода температур воздуха).



Рис. 5. Распределение температур: а – в вертикальном столбе в центре оз. Святого; б – в среднем по оз. Святому в случае удлиненной дамбы.


Построено распределение поверхностной температуры воды при существующем расположении дамб в экстремальных условиях через 5 (рис. 6, а, б) и 10 дней (рис. 6, в, г) после начала водовыпуска в отсутствие ветра (рис. 6, а, в) и при ветре северного направления со скоростью 5 м/с (рис. 6, б, г). Замечено, что ветер значительно повышает температуру воды на водозаборе и, соответственно, на водовыпуске, но понижает температуру воды в оз. Святом. Анализ результатов моделирования показывает, что влияние новой продольной дамбы усиливает воздействие северного ветра в сторону уменьшения температуры воды на водозаборе на 1°C, но увеличивает перегрев оз. Святого по сравнению с ситуацией, соответствующей современному расположению дамб, на 9°C (рис. 7).








Рис. 6. Распределение поверхностной температуры воды в Шатурских озерах при существующем расположении дамб в экстремальных условиях через 5 дней (а, б) и 10 дней (в, г) после начала водовыпуска в отсутствие ветра (а, в) и при ветре северного направления со скоростью 5 м/с (б, г) (Q = 54 м3/с, TQ = 33°C, Tводы = 25°C, Tвозд = 25°C).



следующая страница >>